Unit 1: Energy

Equations to Learn	
kinetic energy = $\frac{1}{2}$ × mass × speed ²	$E_K = \frac{1}{2} m v^2$
GPE = mass × gravitational field strength × height	$E_P = mgh$
$power = \frac{work done}{time taken} = \frac{energy transferred}{time taken}$	$P = \frac{W}{t} = \frac{E}{t}$
$\begin{array}{l} \text{efficiency} = \frac{\text{useful energy output}}{\text{total energy input}} \\ \text{efficiency} = \frac{\text{useful power output}}{\text{total power input}} \end{array}$	
Equations given in the exam	
elastic potential energy = $0.5 \times \text{spring constant } \times (\text{extension})^2$	$E_e = \frac{1}{2}ke^2$
change in thermal energy = mass × specific heat capacity × temperature change	$\Delta E = mc\Delta\theta$

Unit 2: Electricity

Equations to Learn	
charge flow = current × time	Q = I t
potential difference = current × resistance	V = I R
total resistance = resistance of component 1 + resistance of component 2	$R_T = R_1 + R_2$
power = current × potential difference	P = IV
power = (current) ² × resistance	$P = I^2 R$
energy transferred = power × time	E = Pt
energy transferred $=$ charge flow \times potential difference	E = QV

^{*} Higher tier only

Unit 3: Particle Model of Matter

Equations to Learn	
density = $\frac{\text{mass}}{\text{volume}}$	$ \rho = \frac{m}{V} $
Equations given in the exam	
change in thermal energy = mass × specific heat capacity × temperature change	$\Delta E = mc\Delta\theta$
thermal energy for a change in state = mass × specific latent heat	E = mL
^ for a gas: pressure × volume = constant	pV = constant

Unit 6: Waves

Equations to Learn	
wave speed = frequency × wavelength	$v = f \lambda$
Equations given in the exam	
$time period = \frac{1}{frequency}$	$T = \frac{1}{f}$
^ magnification $= rac{ ext{image height}}{ ext{object height}}$	$M = \frac{h_{image}}{h_{object}}$

Unit 7: Magnetism and Electromagnetism

F = BIl
$\frac{V_P}{V_S} = \frac{N_P}{N_S}$
$V_P I_P = V_S I_S$

Unit 5: Forces

Equations to Learn	
weight = mass × gravitational field strength	W = m g
work done = force × distance (moved along the line of action of the force)	W = Fs
force = spring constant × extension	F = ke
moment of a force = force × distance (perpendicular to the direction of the force)	M = Fd
pressure = $\frac{\text{force normal to a surface}}{\text{area of that surface}}$	$p = \frac{F}{A}$
distance travelled = speed × time	s = vt
acceleration = $\frac{\text{change in velocity}}{\text{time taken}}$	$a = \frac{\Delta v}{t}$
$= \frac{\text{final velocity-initial velocity}}{\text{time taken}}$	$=\frac{v-u}{t}$
resultant force = mass × acceleration	F = ma
* momentum = mass × velocity	p = mv
Equations given in the exam	•
* ^ Pressure = height of column × density of liquid × gravitational field strength	$p = h \rho g$
^ (final velocity) 2 – (initial velocity) 2 = $2 \times acceleration \times distance$	
* ^ Force = change in momentum time taken	$F = \frac{m \Delta t}{t}$

Unit 4: Atomic Structure & Unit 8: Space

There are no equations in these sections of the course

[^] Separate Physics only